Learning Membership Functions in a Function-Based Object Recognition System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Membership Functions in a Function-Based Object Recognition System

Functionality-based recognition systems recognize objects at the category level by reasoning about how well the objects support the expected function. Such systems naturally associate a \measure of goodness" or \membership value" with a recognized object. This measure of goodness is the result of combining individual measures, or membership values, from potentially many primitive evaluations of...

متن کامل

Learning Object Recognition in a NeuroBotic System

Object localisation and identification is a crucial problem for advanced mobile service robots. We developed an object recognition system that localises and identifies objects using a colour-based visual attention control algorithm and a hierarchical neural network for object classification utilising hierarchical class grouping. The approach is evaluated in a test scenario where a robot is situ...

متن کامل

Function-based object recognition

We propose a novel scheme for using supervised learning for function based classification of objects in 3D images. During the learning process, a generic multi-level hierarchical description of object classes is constructed. The object classes are described in terms of functional components. The multi-level hierarchy is designed and constructed using a large set of signature-based reasoning and...

متن کامل

Learning indexing functions for 3-D model-based object recognition

Geometric indexing is an efficient method of recovering match hypotheses in modelbased object recognition. Unlike other methods, which search for viewpointinvariant shape descriptors to use as indices, we use a learning method to model the smooth variation in appearance of local feature sets (LFS). Indexing from LFS effectively deals with the problems of occlusion and missing features. The func...

متن کامل

A Hybrid Learning System for Object Recognition

We propose a hybrid learning system which combines two different theories of learning, namely implicit and explicit learning. They are realized by the machine learning methods of reinforcement learning and belief revision, respectively. The resulting system can be regarded as an autonomous agent which is able to learn from past experiences as well as to acquire new knowledge from its environmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Artificial Intelligence Research

سال: 1995

ISSN: 1076-9757

DOI: 10.1613/jair.236